
Copyright © SYSGO |

Copyright © SYSGO. For public use.

TECHNOLOGY INNOVATIONS AT SYSGO

DDESC 2022

info@sysgo.com

Copyright © SYSGO |

THE SELECTED TOPICS

2022 – Public | CC BY-NC 4.0 2

I. Fuzz testing and its benefit

II. Hardware-assisted intrusion detection system for RTOS

III. Certification for security and safety

Copyright © SYSGO | 2022 – Public | CC BY-NC 4.0 3

Fuzz Testing

and its Benefit

Copyright © SYSGO |

I. FUZZ TESTING – THE ENVIRONMENT

2022 – Public | CC BY-NC 4.0 4

• PikeOS kernel is certified for safety for higher safety levels

− For example, bugs in the kernel may cause hazardous conditions of an airplane

− Therefore, robust verification processes and systematic testing are in place for many years

• Developers very competent professionals with habits of:

− Attention to detail, testing their code on their own seriously, making mistakes only sparsely

− They usually peer-review their code

− As a safety net they have a further independent testsuite (playground) stressing the kernel for

long time by very diverse means

• On top of this verification department performs verification processes independently:

− Systematic testing

• For example, PikeOS kernel has ~1900 interface requirements, each being tested

− Many other activities and analyses

Copyright © SYSGO |

I. FUZZ TESTING – THE ENVIRONMENT

2022 – Public | CC BY-NC 4.0 5

Developing code

Developer’s feature

tests

The kernel

playground testsuite

Product testing

Requirement-based

testing achieving full

code coverage

Stack analysis

Timing analysis

Partitioning analysis

Formal reviews

During or after development

When the feature is done.

Or twice weekly.

Before product release

Uncertified product Product ready for safety certification

Fuzzing has been

introduced here

Engineering department Verification department

Copyright © SYSGO |

I. THE KERNEL PLAYGROUND TEST SUITE

2022 – Public | CC BY-NC 4.0 6

• A long run/stress test suite extended by fuzzing:

− Most syscalls wrapped, their arguments are randomized

− These syscalls are called from a randomized hierarchy threads and tasks

− A blocker task randomly blocking CPUs

− An IPC task randomly issuing inter-process communication

− CPU allocation randomized, priorities randomized, address space layout randomized, …

− From fuzzing perspective too many interesting details to fit on one slide

• Currently:

− Executed twice weekly for 4 kernel variants for 30 mins on 59 hardware platforms

− The test suite detects 33-50% of bug reports that trigger a kernel assertion or a kernel panic

Copyright © SYSGO |

I. ILLUSTRATING THE BENEFIT OF FUZZ TESTING

2022 – Public | CC BY-NC 4.0 7

• Focusing just on reported bugs of “critical” priority the fuzzer initially detected 6 such bugs
− These bugs were strongly desired to get addressed soon

− 5 of them were classified for possible safety consequences

− Triggering them required complex, unusual and often multithreaded conditions

• After the initial period the benefit of fuzzing cannot be interpreted
− fuzzer was integrated into early development phases, so its findings do not get into bug reports

• Conclusion: Fuzz testing was an efficient complement in testing approaches of PikeOS kernel

Copyright © SYSGO | 2022 – Public | CC BY-NC 4.0 8

Hardware-assisted

Intrusion Detection System

for RTOS

Copyright © SYSGO |

II. HARDWARE-ASSISTED IDS FOR RTOS

2022 – Public | CC BY-NC 4.0 9

• Utilizing ARM CoreSight to capture control-flow traces of monitored application

− Control-flow traces ~ branches, jumps or other non-linear flow in the program execution

− CoreSight stores the traces into a limited Embedded trace buffer

• IDS architecture (simplified):

− Monitored application runs on a single core, the trace processing server on second core

− The trace processing server suspends the application when the trace buffer gets full to process it

• Thus, having impact on schedulability

• A method how to construct feasible schedules was proposed

• It introduces performance reduction

• Control-flow integrity check

− Application “footprint” approach has been used

− The footprint is the rate of trace buffer overfills per processing server period

• Simple. Actually, with promising detection accuracy.

− This may be extended by more sophisticated checks (see [1])

• But these may cause further issues with scheduability and performance

[1] Towards Transparent Control-Flow Integrity in Safety-Critical Systems, ISC 2020

Copyright © SYSGO |

II. HARDWARE-ASSISTED IDS FOR RTOS

2022 – Public | CC BY-NC 4.0 10

• Evaluation

− TACLeBench benchmark, multimedia processing single-threaded applications

− Footprint obtained during the training phase

− Then, the application got modified by exploiting added stack overflow vulnerability

− 100% detection accuracy for great majority of benchmark applications

• Details published in [1]

[1] Safety-Aware Integration of Hardware-Assisted Program Tracing in Mixed-Criticality Systems for Security Monitoring, RTAS 2021

Copyright © SYSGO |

II. HARDWARE-ASSISTED IDS FOR RTOS

2022 – Public | CC BY-NC 4.0 11

• Strengths

− Promising accuracy (to be verified on more diverse set of applications)

− No internal knowledge or interaction of monitored application (e.g. instrumentation, …)

• Neutral properties

− Typically observed detection time in two processing server periods

• May not be sufficient to detect fast intrusions soon enough

• Weaknesses

− The proposed scheduling framework may still be optimized to utilize multiple cores better

− The monitored application is suspended during trace processing

• Significant performance slowdown

• May be bounded, but then not all traces get processed

• If unbounded we experienced 40-605% CPU capacity needed for trace processing

Copyright © SYSGO | 2022 – Public | CC BY-NC 4.0 12

Certification for

Security and Safety

Copyright © SYSGO |

III. CERTIFICATION FOR SECURITY AND SAFETY

2022 – Public | CC BY-NC 4.0 13

• Goals of our efforts:

− Introduce more precedents of embedded RTOS usages that are certified for security in safety

context in order to help establishing common practices:

• The standards for securing safety-critical embedded systems are not yet fully developed

• Regulations for securing critical infrastructure are not yet fully designed and required

• Markets are sometimes hesitant to certify industrial embedded systems for security, partly

because there is not yet much established practice

− What safety certification artefacts can be reused for security certification?

− How differing security standards relate to each other?

• For example, interchangeability, evaluation processes, organizations involved, …

− As PikeOS is a software component what is the methodology for compositional certification?

• For example, IEC 62443 is well structured for composition of components, CC not so much

• More futuristic topic

− Certifying AI for safety or security

Copyright © SYSGO |

III. CERTIFICATION FOR SECURITY AND SAFETY

2022 – Public | CC BY-NC 4.0 14

• Outcomes:

− We applied PikeOS in railway, subway and smart grid while having it certified for IEC 62443 as a

Multiple Independent Layers of Security (MILS) system

• PikeOS is certified for Common Criteria only

[1] “we conclude that a CC certification of a separation kernel suffices for use as subcomponent

of a product under 62443-4-1/62443-4-2 certification”

− Reuse of safety certification artefacts and processes for security certification

• Requirement database and tracing reusable or extendable

• Security additions needed: threat modelling, tests for security aspects, penetration testing,

user manual for maintaining the security properties, …

• Safety verification is focused on documented API, because use of undocumented API is

forbidden to application developers. This cannot be forbidden to hackers.

[1] Security Certification of Cyber Physical Systems for Critical Infrastructure based on the Compositional MILS Architecture, IECON 2021

Copyright © SYSGO |

SYSGO GmbH
Am Pfaffenstein 8

55270 Klein-Winternheim

Germany

Phone: +49 6136 99480

E-Mail: info@sysgo.com

...

QUESTIONS OR COMMENTS?

www.sysgo.com

Subscribe, Like and Follow:

www.sysgo.com/newsletter

...

www.sysgo.com/twitter

www.sysgo.com/linkedin

www.sysgo.com/youtube

2022 - Public 15

