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• PikeOS kernel is certified for safety for higher safety levels

− For example, bugs in the kernel may cause hazardous conditions of an airplane

− Therefore, robust verification processes and systematic testing are in place for many years

• Developers very competent professionals with habits of:

− Attention to detail, testing their code on their own seriously, making mistakes only sparsely

− They usually peer-review their code

− As a safety net they have a further independent testsuite (playground) stressing the kernel for 

long time by very diverse means

• On top of this verification department performs verification processes independently:

− Systematic testing

• For example, PikeOS kernel has ~1900 interface requirements, each being tested

− Many other activities and analyses
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• A long run/stress test suite extended by fuzzing:

− Most syscalls wrapped, their arguments are randomized

− These syscalls are called from a randomized hierarchy threads and tasks

− A blocker task randomly blocking CPUs

− An IPC task randomly issuing inter-process communication

− CPU allocation randomized, priorities randomized, address space layout randomized, …

− From fuzzing perspective too many interesting details to fit on one slide

• Currently:

− Executed twice weekly for 4 kernel variants for 30 mins on 59 hardware platforms

− The test suite detects 33-50% of bug reports that trigger a kernel assertion or a kernel panic
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• Focusing just on reported bugs of “critical” priority the fuzzer initially detected 6 such bugs
− These bugs were strongly desired to get addressed soon

− 5 of them were classified for possible safety consequences

− Triggering them required complex, unusual and often multithreaded conditions

• After the initial period the benefit of fuzzing cannot be interpreted
− fuzzer was integrated into early development phases, so its findings do not get into bug reports

• Conclusion: Fuzz testing was an efficient complement in testing approaches of PikeOS kernel 
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• Utilizing ARM CoreSight to capture control-flow traces of monitored application

− Control-flow traces ~ branches, jumps or other non-linear flow in the program execution

− CoreSight stores the traces into a limited Embedded trace buffer

• IDS architecture (simplified):

− Monitored application runs on a single core, the trace processing server on second core

− The trace processing server suspends the application when the trace buffer gets full to process it

• Thus, having impact on schedulability

• A method how to construct feasible schedules was proposed

• It introduces performance reduction

• Control-flow integrity check

− Application “footprint” approach has been used

− The footprint is the rate of trace buffer overfills per processing server period

• Simple. Actually, with promising detection accuracy.

− This may be extended by more sophisticated checks (see [1])

• But these may cause further issues with scheduability and performance

[1] Towards Transparent Control-Flow Integrity in Safety-Critical Systems, ISC 2020
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• Evaluation

− TACLeBench benchmark, multimedia processing single-threaded applications

− Footprint obtained during the training phase

− Then, the application got modified by exploiting added stack overflow vulnerability

− 100% detection accuracy for great majority of benchmark applications

• Details published in [1]

[1] Safety-Aware Integration of Hardware-Assisted Program Tracing in Mixed-Criticality Systems for Security Monitoring, RTAS 2021
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• Strengths

− Promising accuracy (to be verified on more diverse set of applications)

− No internal knowledge or interaction of monitored application (e.g. instrumentation, …)

• Neutral properties

− Typically observed detection time in two processing server periods

• May not be sufficient to detect fast intrusions soon enough

• Weaknesses

− The proposed scheduling framework may still be optimized to utilize multiple cores better

− The monitored application is suspended during trace processing

• Significant performance slowdown

• May be bounded, but then not all traces get processed

• If unbounded we experienced 40-605% CPU capacity needed for trace processing
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• Goals of our efforts:

− Introduce more precedents of embedded RTOS usages that are certified for security in safety 

context in order to help establishing common practices:

• The standards for securing safety-critical embedded systems are not yet fully developed

• Regulations for securing critical infrastructure are not yet fully designed and required

• Markets are sometimes hesitant to certify industrial embedded systems for security, partly 

because there is not yet much established practice

− What safety certification artefacts can be reused for security certification?

− How differing security standards relate to each other?

• For example, interchangeability, evaluation processes, organizations involved, …

− As PikeOS is a software component what is the methodology for compositional certification?

• For example, IEC 62443 is well structured for composition of components, CC not so much

• More futuristic topic

− Certifying AI for safety or security
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• Outcomes:

− We applied PikeOS in railway, subway and smart grid while having it certified for IEC 62443 as a 

Multiple Independent Layers of Security (MILS) system

• PikeOS is certified for Common Criteria only

[1] “we conclude that a CC certification of a separation kernel suffices for use as subcomponent 

of a product under 62443-4-1/62443-4-2 certification”

− Reuse of safety certification artefacts and processes for security certification

• Requirement database and tracing reusable or extendable

• Security additions needed: threat modelling, tests for security aspects, penetration testing, 

user manual for maintaining the security properties, …

• Safety verification is focused on documented API, because use of undocumented API is 

forbidden to application developers. This cannot be forbidden to hackers.

[1] Security Certification of Cyber Physical Systems for Critical Infrastructure based on the Compositional MILS Architecture, IECON 2021 
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